Q. Ou
8 records found
1
Photo-oxidation of Micro-and Nanoplastics
Physical, Chemical, and Biological Effects in Environments
Photodegradation of microplastics (MPs) induced by sunlight plays a crucial role in determining their transport, fate, and impacts in aquatic environments. Dissolved black carbon (DBC), originating from pyrolyzed carbon, can potentially mediate the photodegradation of MPs owing to its potent photosensitization capacity. This study examined the impact of pyrolyzed wood derived DBC (5 mg C/L) on the photodegradation of polystyrene (PS) MPs in aquatic solutions under UV radiation. It revealed that the photodegradation of PS MPs primarily occurred at the benzene ring rather than the aliphatic segments due to the fast attack of hydroxyl radical (•OH) and singlet oxygen (1O2) on the benzene ring. The photosensitivity of DBC accelerated the degradation of PS MPs, primarily attributed to the increased production of •OH, 1O2, and triplet-excited state DBC (3DBC*). Notably, DBC-mediated photodegradation was related to its molecular weight (MW) and chemical properties. Low MW DBC (<3 kDa) containing more carbonyl groups generated more •OH and 1O2, accelerating the photodegradation of MPs. Nevertheless, higher aromatic phenols in high MW DBC (>30 kDa) scavenged •OH and generated more O2•-, inhibiting the photodegradation of MPs. Overall, this study offered valuable insights into UV-induced photodegradation of MPs and highlighted potential impacts of DBC on the transformation of MPs.
@enThe occurrence and removal of microplastics (MPs) in drinking water treatment plants (DWTPs) have been evaluated based on particle number, while the mass concentration and removal characteristics based on the mass of MPs, and especially nanoplastics (NPs), remain unknown. This study employed pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) to determine the mass concentration of MPs and NPs with different size ranges (0.01-1, 1-50, and 50-1000 μm) across the entire treatment process in a DWTP. The total polymers were measured at 9.63 ± 1.52 μg/L in raw water and 0.77 ± 0.05 μg/L in treated water, with the dominant polymers being polypropylene and polyethylene terephthalate. NPs (0.01-1 μm) accounted for only 3.2-5.3% of the total polymers, with an average concentration of 0.38 μg/L in raw water and 0.04 μg/L in treated water. Notably, NPs and sub-MPs (1-50 μm) demonstrated relatively low efficiency in the DWTP at 88.9 ± 3.2 and 88.0 ± 2.5%, respectively, compared with that of the large MPs (50-1000 μm) at 92.9 ± 0.3%. Overall, this study examined the occurrence of MPs and NPs, in a DWTP, emphasizing the significance of considering the mass concentration of MPs and NPs when assessing their pollution levels and removal characteristics.
@enThe excessive use and accumulation of water-soluble polymers (WSPs, known as “liquid plastics”) in the environment can pose potential risks to both ecosystems and human health, but the environmental fate of WSPs remains unclear. Here, the adsorption behavior of WSPs with different molecular weight on kaolinite (Kaol) and montmorillonite (Mt) were examined. The results showed that the adsorption of PEG and PVP on minerals were controlled by hydrogen bond and van der Waals force. The Fourier transform infrared (FTIR) spectra and two-dimensional correlation spectroscopy (2D-COS) analysis revealed that there were interactions between the Al-O and Si-O groups of the minerals and the polar O- or N-containing functional groups as well as the alkyl groups of PEG and PVP. The adsorption characteristics of WSPs were closely related to their molecular weight and the pore size of minerals. Due to the relatively large mesopore size of Kaol, both PEG and PVP were absorbed into inner spaces, for which the adsorption capacity increased with molecular weight of the polymers. For Mt, all types of PEG could enter its micropores, while PVP with larger molecular weights appeared to be confined externally, leading to a decrease in the adsorption capacity of PVP with increasing molecular weight. The findings of this study provide a theoretical basis for scientific evaluation of environmental processes of WSPs.
@enIncreasing wildfire frequency, a consequence of global climate change, releases incomplete combustion byproducts such as aquatic pyrogenic dissolved organic matter (DOM) and black carbon (DBC) into waters, posing a threat to water security. In August 2022, a series of severe wildfires occurred in Chongqing, China. Samples from seven locations along the Yangtze and Jialing Rivers revealed DBC, quantified by the benzene poly(carboxylic acid) (BPCA) method, comprising 9.5-19.2% of dissolved organic carbon (DOC). High concentrations of BPCA-DBC with significant polycondensation were detected near wildfire areas, likely due to atmospheric deposition driven by wind. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) revealed that wildfires were associated with an increase in condensed aromatics, proteins, and unsaturated hydrocarbons, along with a decrease in lignins. The condensed aromatics primarily consisted of dissolved black nitrogen (DBN), contributing to abundant high-nitrogen-containing compounds in locations highly affected by wildfires. Meanwhile, wildfires potentially induced the input of recalcitrant sulfur-containing protein-like compounds, characterized by high oxidation, aliphatic nature, saturation, and low aromaticity. Overall, this study revealed the appearance of recalcitrant DBC and dissolved organic sulfur in river waters following wildfire events, offering novel insights into the potential impacts of wildfires on water quality and environmental biogeochemistry.
@enThe level of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, pyrolysis gas chromatography-mass spectrometry was used to determine the mass concentrations of MPs and NPs with different size ranges (0.01-1, 1-50, and 50-1000 μm) across the whole treatment schemes in two WWTPs. The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. The proportions of NPs (0.01-1 μm) were 12.0-17.9 and 5.6-19.5% in plants A and B, respectively, and the removal efficiency of NPs was lower than that of MPs (>1 μm). Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01-1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs.
@enNanoplastics (NPs) are currently considered an environmental pollutant of concern, but the actual extent of NP pollution in environmental water bodies remains unclear and there is not enough quantitative data to conduct proper risk assessments. In this study, a pretreatment method combining ultrafiltration (UF, 100 kDa) with hydrogen peroxide digestion and subsequent detection with pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) was developed and used to identify and quantify six selected NPs in surface water (SW) and groundwater (GW), including poly(vinylchloride) (PVC), poly(methyl methacrylate) (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), and poly(ethylene terephthalate) (PET). The results show that the proposed method could detect NPs in environmental water samples. Nearly all selected NPs could be detected in the surface water at all locations, while PVC, PMMA, PS, and PET NPs were frequently below the detection limit in the groundwater. PP (32.9-69.9%) and PE (21.3-44.3%) NPs were the dominant components in both surface water and groundwater, although there were significant differences in the pollution levels attributed to the filtration efficiency of riverbank, with total mass concentrations of 0.283-0.793 μg/L (SW) and 0.021-0.203 μg/L (GW). Overall, this study quantified the NPs in complex aquatic environments for the first time, filling in gaps in our knowledge about NP pollution levels and providing a useful methodology and important reference data for future research.
@en