GP

G. Papaioannou

13 records found

Effective emission control technologies and eco-friendly propulsion systems have been developed to decrease exhaust particle emissions. However, more work must be conducted on non-exhaust traffic-related sources such as tyre wear. The advent of automated vehicles (AVs) enables re ...
Head motion is a key determinant of motion comfort and differs substantially from seat motion due to seat and body compliance and dynamic postural stabilization. This paper compares different human body model fidelities to transmit seat accelerations to the head for the assessmen ...
Remote driving plays an essential role in coordinating automated vehicles in some challenging situations. Due to the changed driving environment, the experiences and behaviors of remote drivers would undergo some changes compared to conventional drivers. To study this, a continuo ...
Existing models of vibration transmission through the seated human body are primarily two-dimensional, focusing on the mid-sagittal plane and in-plane excitation. However, these models have limitations when the human body is subjected to vibrations in the mid-coronal plane. Three ...
Teleoperation is considered as a viable option to control fully automated vehicles (AVs) of Level 4 and 5 in special conditions. However, by bringing the remote drivers in the loop, their driving experience should be realistic to secure safe and comfortable remote control. Theref ...
In this paper, a path-tracking controller is developed for an autonomous vehicle with All-Wheel-Steering (AWS) capability. Based on nonlinear model predictive control, the proposed controller is formulated in a way that allows the manipulation of vehicle’s attitude during path-tr ...
The adoption of automated vehicles will be a positive step towards road safety and environmental benefits. However, one major challenge that still exist is motion sickness. The move from drivers to passengers who will engage in non-driving related tasks as well as the potential c ...
The goal of this paper is to contribute to the accurate prediction of human body motion by proposing a novel head-neck model for dynamic driving scenarios with complex vehicle motions. While automated vehicles are considered a potential solution to several transportation issues, ...
Active muscles are crucial for maintaining postural stability when seated in a moving vehicle. Advanced active 3D non-linear full body models have been developed for impact and comfort simulation, including large numbers of individual muscle elements, and detailed non-linear ...
In the transition from partial to high automation, occupants will no longer be actively involved in driving. This will allow the use of travel time for work or leisure, where high comfort levels preventing motion sickness are required. In this paper, an optimal trajectory plannin ...
Due to the complexity of the human body and its neuromuscular stabilization, it has been challenging to efficiently and accurately predict human motion and capture posture while being driven. Existing simple models of the seated human body are mostly two-dimensional and developed ...
The mass adoption of automated vehicles in the near future will benefit safety (of occupants and pedestrians), the environment (low emissions), and society (accessibility, on-demand travel). There are, however, still challenges that need to be addressed, with one of the most cruc ...