We present a computationally efficient steady-state solution method to model the aeroelastic deformation of a ram-air kite for airborne wind energy applications. The kite’s weight in comparison to the aerodynamic forces is small which justifies a quasi-steady analysis, neglecting
...
We present a computationally efficient steady-state solution method to model the aeroelastic deformation of a ram-air kite for airborne wind energy applications. The kite’s weight in comparison to the aerodynamic forces is small which justifies a quasi-steady analysis, neglecting gravitational and inertial force effects [1]. The approach is suitable to efficiently determine the deformed configuration of a ram-air kite for design and optimization purposes as found in [2]. Because of the expected large deformations and changes in the flow field, fluid-structure interaction has to be taken into account in the analysis. @en