AK

Alexander Krah

4 records found

It is a conjecture that the ε subunit regulates ATP hydrolytic function of the F1Fo ATP synthase in bacteria. This has been proposed by the ε subunit taking an extended conformation, with a terminal helix probing into the central architecture of the hexameric catalytic domain, pr ...
Background: Prediction of ligand binding and design of new function in enzymes is a time-consuming and expensive process. Crystallography gives the impression that proteins adopt a fixed shape, yet enzymes are functionally dynamic. Molecular dynamics offers the possibility of pro ...
The ϵ subunit of ATP synthases has been proposed to regulate ATP hydrolysis in bacteria. Prevailing evidence supports the notion that when the ATP concentration falls below a certain threshold, the ϵ subunit changes its conformation from a non-inhibitory down-state to an extended ...
ATP synthases catalyse the formation of ATP, the most common chemical energy storage unit found in living cells. These enzymes are driven by an electrochemical ion gradient, which allows the catalytic evolution of ATP by a binding change mechanism. Most ATP synthases are capable ...