DNA looping is important for genome organization in all domains of life. The basis of DNA loop formation is the bridging of two separate DNA double helices. Detecting DNA bridge formation generally involves the use of complex single-molecule techniques (atomic force microscopy, m
...
DNA looping is important for genome organization in all domains of life. The basis of DNA loop formation is the bridging of two separate DNA double helices. Detecting DNA bridge formation generally involves the use of complex single-molecule techniques (atomic force microscopy, magnetic or optical tweezers). Although DNA bridging can be qualitatively described, quantification of DNA bridging and bridging dynamics using these techniques is challenging. Here we describe a biochemical assay capable of not only detecting DNA bridge formation but also allowing for quantification of DNA bridging efficiency and the quantification of the effects of physicochemical conditions or protein interaction partners on DNA bridge formation.@en