JC

Jiang Chang

7 records found

Authored

The development of biodegradable Fe-based bone implants has rapidly progressed in recent years. Most of the challenges encountered in developing such implants have been tackled individually or in combination using additive manufacturing technologies. Yet not all the challenges ...

The treatment of femoral nonunion with large segmental bone defect is still challenging. Although magnesium alloys have been considered potential materials for such a treatment, their application is limited by their fast degradation. Adding bioceramic particles into magnesium ...

Iron-matrix composites with calcium silicate (CS) bioceramic as the reinforcing phase were fabricated through powder metallurgy processes. The microstructures, mechanical properties, apatite deposition and biodegradation behavior of the Fe-CS composites, as well as cell attachme ...

The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinfor ...

Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM),
having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent ...

Biodegradable metal matrix composites (MMCs) with pure magnesium as the matrix and bioceramic calcium silicate (CS) as the reinforcement phase were fabricated by means of spark plasma sintering (SPS). The microstructure, mechanical properties and degradation behavior of the co ...