This letter considers the design of sparse actuator schedules for linear time-invariant systems. An actuator schedule selects, for each time instant, which control inputs act on the system in that instant. We address the optimal scheduling of control inputs under a hard constrain
...
This letter considers the design of sparse actuator schedules for linear time-invariant systems. An actuator schedule selects, for each time instant, which control inputs act on the system in that instant. We address the optimal scheduling of control inputs under a hard constraint on the number of inputs that can be used at each time. For a sparsely controllable system, we characterize sparse actuator schedules that make the system controllable, and then devise a greedy selection algorithm that guarantees controllability while heuristically providing low control effort. We further show how to enhance our greedy algorithm via Markov chain Monte Carlo-based randomized optimization.
@en