JR

J. Rozendaal

10 records found

We obtain polynomial decay rates for C0-semigroups, assuming that the resolvent grows polynomially at infinity in the complex right half-plane. Our results do not require the semigroup to be uniformly bounded, and for unbounded semigroups, we improve upon previous resu ...
We study polynomial and exponential stability for C0-semigroups using the recently developed theory of operator-valued (Lp,Lq) Fourier multipliers. We characterize polynomial decay of orbits of a C0-semigroup in terms of the (Lp
We study growth rates for strongly continuous semigroups. We prove that a growth rate for the resolvent on imaginary lines implies a corresponding growth rate for the semigroup if either the underlying space is a Hilbert space, or the semigroup is asymptotically analytic, or if t ...
In this paper we develop the theory of Fourier multiplier operators (Formula presented.), for Banach spaces X and Y, (Formula presented.) and (Formula presented.) an operator-valued symbol. The case (Formula presented.) has been studied extensively since the 1980s, but far less i ...
In this article, we consider Fourier multiplier operators between vector-valued Besov spaces with different integrability exponents p and q, which depend on the type p and cotype q of the underlying Banach spaces. In a previous article, we considered Lp-Lq m ...

Let X, Y be Banach spaces and let L(X,Y) be the space of bounded linear operators from X to Y. We develop the theory of double operator integrals on L(X,Y) and apply this theory to obtain commutator estimates of the form

∥f(B)S−Sf(A)∥L(X,Y)≤const∥BS−SA∥L(X,Y)for a large class of functions f, where A∈L(X), B∈L(Y) are scalar type operators and S∈L(X,Y). In particular, we establish this estimate for f(t):=|t| and for diagonalizable operators on X=ℓp and Y=ℓq for p<q.

We also study the estimate above in the setting of Banach ideals in L(X,Y). The commutator estimates we derive hold for diagonalizable matrices with a constant independent of the size of the matrix.

@en
We study functional calculus properties of C0-groups on real interpolation spaces using transference principles. We obtain interpolation versions of the classical transference principle for bounded groups and of a recent transference principle for unbounded groups. Then we show t ...
This thesis is dedicated to the study of several aspects of the theory of functional calculus. This theory considers the combination of an operator A and a function f(z) of a variable z, resulting in an operator f(A). One then attempts to study properties of the operator f(A) in ...