The analysis of equipment degradation has traditionally developed in two main directions. One approach, of great interest for control system design, has been to consider that degradation causes fundamental changes to the behaviour of a system. Another approach, used in optimal ma
...
The analysis of equipment degradation has traditionally developed in two main directions. One approach, of great interest for control system design, has been to consider that degradation causes fundamental changes to the behaviour of a system. Another approach, used in optimal maintenance planning and production scheduling, considers degradation as a separate process that affects performance but does not necessarily change the behaviour. This article provides a review of mathematical models of degradation that will facilitate the integration of degradation modelling into control and optimisation schemes. To this end, a new unified classification is proposed. It takes into account the influence of degradation on the behaviour of the system, as well as the factors influencing degradation. Understanding these mutual influences will enable improved optimization, design and operation of control systems. The flexibility of the proposed classification is demonstrated in an industrial application to a multi-product batch scheduling process.
@en