IP

I. Piergentili

7 records found

Authored

Living cells adapt to changes of their environment through a cascade of chemical reactions regulated by enzymes. Each cellular pathway contains a series of enzymes, which are capable of receiving and translating a specific chemical or physical signal into a biological response. T ...

The redox balance in tumor and diseased cells often leads to the production of reactive oxygen species (ROS). Many ROS-responsive materials based on sulfur oxidation have been reported with the goal of achieving controlled delivery at the tumor. However, these materials often ...

We present an approach for detecting thiol analytes through a self-propagating amplification cycle that triggers the macroscopic degradation of a hydrogel scaffold. The amplification system consists of an allylic phosphonium salt that upon reaction with the thiol analyte relea ...

Hydrogels that can disintegrate upon exposure to reactive oxygen species (ROS) have the potential for targeted drug delivery to tumor cells. In this study, we developed a diphenylalanine (FF) derivative with a thioether phenyl moiety attached to the N-terminus that can form su ...

Out of equilibrium operation of chemical reaction networks (CRNs) enables artificial materials to autonomously respond to their environment by activation and deactivation of intermolecular interactions. Generally, their activation can be driven by various chemical conversions, ...

In certain tumor and diseased tissues, reactive oxygen species (ROS), such as H2O2, are produced in higher concentrations than in healthy cells. Drug delivery and release systems that respond selectively to the presence of ROS, while maintaining their sta ...

Acylhydrazones formation has been widely applied in materials science and biolabeling. However, their sluggish condensation rate under neutral conditions limits its application. Herein, indolines with electron-donating groups are reported as a new catalyst scaffold, which can ...