GS

G. Smaragdos

6 records found

A heterogeneous hardware-software system implemented on an Avnet ZedBoard Zynq SoC platform, is proposed for the computation of an extended Hodgkin Huxley (eHH), biologically plausible neural model. SoC's ARM A9 is in charge of handling execution of a single neuron as defined in ...
Simulation of brain neurons in real-time using biophysically meaningful models is a prerequisite for comprehensive understanding of how neurons process information and communicate with each other, in effect efficiently complementing in-vivo experiments. State-of-the-art neuron si ...
In-vivo and in-vitro experiments are routinely used in neuroscience to unravel brain functionality. Although they are a powerful experimentation tool, they are also time-consuming and, often, restrictive. Computational neuroscience attempts to solve this by using biologically-pla ...
The Inferior-Olivary nucleus (ION) is a well-charted brain region, heavily associated with the sensorimotor control of the body. It comprises neural cells with unique properties which facilitate sensory processing and motor-learning skills. Simulations of such neurons become rapi ...
The Inferior-Olivary nucleus (ION) is a well-charted region of the brain, heavily associated with sensorimotor control of the body. It comprises ION cells with unique properties which facilitate sensory processing and motor-learning skills. Various simulation models of ION-cell n ...
In this article, new heuristic-search methods and algorithms are presented for enabling highly efficient and adaptive, defect-tolerant multiprocessor arrays. We consider systems where a homogeneous multiprocessor array lies on top of reconfigurable interconnects which allow the p ...