AB

A.R. Brokkelkamp

6 records found

Localized plasmon resonances in 2D transition metal dichalcogenides (TMDs) offer a powerful means to enhance light–matter interactions at the nanoscale, making them ideal candidates for advanced optoelectronic applications. However, disentangling the complex plasmonic interaction ...

Enhanced Nanoscale Characterization of van der Waals Materials

Combining Electron Energy Loss Spectroscopy

Two-dimensional (2D) layered materials are integral to modern condensed matter research due to their remarkable electronic and optical properties. A key feature of these materials is that their properties can be adjusted bymaking small changes to their structure at the nano- and ...
Among the many potential applications of topological insulator materials, their broad potential for the development of novel tunable plasmonics at THz and mid-infrared frequencies for quantum computing, terahertz detectors, and spintronic devices is particularly attractive. The r ...
Twisted 2D materials present an enticing platform for exploring diverse electronic properties owning to the tunability of their bandgap energy. However, the intricate relationship between local heterostrain fields, thickness, and bandgap energy remains insufficiently understood, ...
This study presents an in-depth investigation of the electronic properties and bandgap energy distribution in 1D molybdenum disulfide (1D-MoS2) nanostructures. Through a combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) ...
The electronic properties of two-dimensional (2D) materials depend sensitively on the underlying atomic arrangement down to the monolayer level. Here we present a novel strategy for the determination of the band gap and complex dielectric function in 2D materials achieving a spat ...