S.P. Mulders
39 records found
1
Advancements in wind turbine technology have made wind energy more cost-competitive. While taller towers use less material, they are more susceptible to fatigue. This study introduces a convex model predictive control scheme to actively counteract side-side periodic loads using a
...
Vertical-axis wind turbines (VAWTs) are considered promising solutions for urban wind energy generation due to their design, low maintenance costs, and reduced noise and visual impact compared to horizontal-axis wind turbines (HAWTs). However, deploying these turbines close to de
...
As wind turbine power capacities continue to rise, taller and more flexible tower designs are needed for support. These designs often have the tower's natural frequency in the turbine's operating regime, increasing the risk of resonance excitation and fatigue damage. Advanced loa
...
Wind turbine controllers are nowadays ever more advanced and rely on accurate internal controller model information. Therefore a calibrated model is needed for attaining predictable controller performance and ensuring stable operation. To calibrate the internal model information,
...
Due to the increasing share of (offshore) wind turbines, more stringent requirements on power quality have been established. Importantly, the low-voltage ride-through grid requirement states that a wind turbine must remain connected to the electrical grid after a short intermitte
...
Wind turbines degrade over time, resulting in varying structural, aeroelastic, and aerodynamic properties. In contrast, the turbine controller calibrations generally remain constant, leading to suboptimal performance and potential stability issues. The calibration of wind turbine
...
In order to mitigate periodic blade loads in wind turbines, recent research has analyzed different Individual Pitch Control (IPC) approaches, which typically use the multi-blade coordinate (MBC) transformation. Some of these studies show that the introduction of an additional tun
...
Individual pitch control (IPC) is a method to mitigate periodic blade loads in wind turbines, and it is typically implemented using the multi-blade coordinate (MBC) transform, which converts the blade load measurements from a rotating frame into the non-rotating tilt axis and yaw
...
In recent years, the amount of data available from systems has drastically increased, motivating the use of direct data-driven control techniques that avoid the need of parametric modeling. The aim of this paper is to analyze closed-loop aspects of these approaches in the presenc
...
Modern industrial wind turbine controllers for partial-load region control are becoming increasingly complex by progressively relying on modeled aerodynamic characteristics. These advanced turbine controllers generally consist of a combined wind speed estimator and tracking contr
...
The combined wind speed estimator and tip-speed ratio (WSE–TSR) tracking wind turbine control scheme has seen recent and increased traction from the wind industry. The modern control scheme provides a flexible trade-off between power and load objectives. On the other hand, the Kω
...
A learning algorithm for the calibration of internal model uncertainties in advanced wind turbine controllers
A wind speed measurement-free approach
Wind turbine partial-load controllers have evolved from simple static nonlinear function implementations to more advanced dynamic controller structures. Such dynamic control schemes have the potential to improve power production performance in realistic environmental conditions a
...
The reduction of fatigue loadings in wind turbines to increase their lifetime has become of special interest from a control viewpoint. Individual Pitch Control (IPC) is a well-known approach used to mainly mitigate periodic blade loads, and it is usually implemented with the assi
...
Sensor fault-tolerant control for wind turbines
An iterative learning method
The combined wind speed estimator and tip speed ratio (WSE-TSR) tracking control scheme is widely used to regulate power production for large-scale modern wind turbines. Although very effective, such an advanced control scheme, based on the prior model information, is highly depe
...
On-shore horizontal-axis wind turbines (HAWTs) provide a cost-effective solution for low carbon electricity generation. However, public acceptance is still a problem. A possible alternative to a HAWT is a vertical-axis wind turbine (VAWT), which is more visually appealing and les
...
In most current offshore wind farms, the turbines are controlled greedily, neglecting any coupling by wake effects with other turbines. By neglecting these effects of aerodynamic interactions, the power production performance is substantially reduced. Besides the well-known wake
...
Light Detection and Ranging (LIDAR)-assisted Model Predictive Control (MPC) for wind turbine control has received much attention for its ability to incorporate future wind speed disturbance information in a receding horizon optimal control problem. However, the growth of wind tur
...
Wind turbines are prone to structural degradation, particularly in offshore locations. Based on the structural health condition of the tower, power de-rating strategies can be used to reduce structural loads at the cost of power losses. This paper introduces a novel closed-loop s
...
Data-enabled predictive control with instrumental variables
The direct equivalence with subspace predictive control
Direct data-driven control has attracted substantial interest since it enables optimization-based control without the need for a parametric model. This paper presents a new Instrumental Variable (IV) approach to Data-enabled Predictive Control (DeePC) that results in favorable no
...
The ever-increasing power capacities of wind turbines promote the use of tall and slender turbine towers. This poses a challenge from a fatigue loading perspective by the relocation of the first and lightly-damped tower side-side natural frequency into the turbine operating regim
...