BS
12 records found
1
Advancements in aerial vehicles have presented new challenges for flight control system design. The disturbed airflow caused by rotors and flapping wings and the nonlinearity and uncertainty increased by morphing components impede the identification of a globally accurate model o
...
The current study presents an online iterative adaptive dynamic programming approach to resolve the zero-sum game (ZSG) for nonlinear continuous-time (CT) systems containing a partially unknown dynamic. The Hamilton-Jacobian-Issacs (HJI) equation is solved along the state traject
...
In this paper, we establish an event-triggered intelligent control scheme with a single critic network, to cope with the optimal stabilization problem of nonlinear aeroelastic systems. The main contribution lies in the design of a novel triggering condition with input constraints
...
Morphing structures have acquired much attention in the aerospace community because they enable an aircraft to actively adapt its shape during flight, leading to fewer emissions and fuel consumption. Researchers have designed, manufactured, and tested a morphing wing named SmartX
...
This paper develops an event-triggered optimal control method that can deal with asymmetric input constraints for nonlinear discrete-time systems. The implementation is based on an explainable global dual heuristic programming (XGDHP) technique. Different from traditional GDHP, t
...
Linear Approximate Dynamic Programming (LADP) and Incremental Approximate Dynamic Programming (IADP) are Reinforcement Learning methods that seek to contribute to the field of Adaptive Flight Control. This paper assesses their performance and convergence, as well as the impact of
...
The scarcity of information regarding dynamics and full-state feedback increases the demand for a model-free control technique that can cope with partial observability. To deal with the absence of prior knowledge of system dynamics and perfect measurements, this paper develops a
...
A novel adaptive dynamic programming method, called incremental model-based global dual heuristic programming, is proposed to generate a self-learning adaptive flight controller, in the absence of sufficient prior knowledge of system dynamics. An incremental technique is employed
...
Optimal tracking is a widely researched control problem, but the unavailability of sufficient information referring to system dynamics brings challenges. In this paper, an optimal tracking control method is proposed for an unknown launch vehicle based on the global dual heuristic
...
Sufficient information about system dynamics and inner states is often unavailable to aerospace system controllers, which requires model-free and output feedback control techniques, respectively. This paper presents a novel self-learning control algorithm to deal with these two p
...
This paper proposes a novel adaptive dynamic programming method, called Incremental model-based Global Dual Heuristic Programming, to generate a self-learning adaptive controller, in the absence of sufficient prior knowledge of system dynamics. An incremental technique is employe
...