AG

A.M. Gonzalez Nelson

7 records found

The ease with which molecular building blocks can be ordered in metal–organic frameworks is an invaluable asset for many potential applications. In this work, we exploit this inherent order to produce chromatic polarizers based on visible-light linear dichroism via cobalt paddlew ...
The organic components in metal-organic frameworks (MOFs) are unique: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are ...
Metal–organic frameworks (MOFs) are ordered arrays of polytopic organic ligands, commonly called linkers, which interconnect metal-based inorganic building units via coordination bonds. The highly precise assembly of well defined building blocks into extended 3-D networks, known ...
A modulated synthesis approach based on the chelating properties of oxalic acid (H2C2O4) is presented as a robust and versatile method to achieve highly crystalline Al-based metal-organic frameworks. A comparative study on this method and the alre ...
We report the synthesis and dielectric characterization of novel polyvinylidene fluoride-trifluoroethylene P(VDF-TrFE) composite films containing [(CH3)2NH2][Mg(HCOO)3] (DMAMg) and [NH4][Zn(HCOO)3] (AmZn) dense met ...
Among the numerous fascinating properties of metal–organic frameworks (MOFs), their rotational dynamics is perhaps one of the most intriguing, with clear consequences for adsorption and separation of molecules, as well as for optical and mechanical properties. A closer look at th ...