A. Ebrahimi
33 records found
1
Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating biomaterial scaffolds, poses challenges for predicting directional solidification due to its highly nonlinear behavior and complex interplay of process parameters. Conventional numerical
...
The present study addresses the challenge of enhancing computational efficiency without compromising accuracy in numerical simulations of vacuum gas dynamics using the direct simulation Monte Carlo (DSMC) method. A technique termed 'fixed particle per cell (FPPC)' was employed, w
...
The effect of the laser beam intensity profile in laser-based directed energy deposition
A high-fidelity thermal-fluid modeling approach
Modeling the thermal and fluid flow fields in laser-based directed energy deposition (DED-LB) is crucial for understanding process behavior and ensuring part quality. However, existing models often fail to accurately predict these fields due to simplifying assumptions, particular
...
Solid-liquid phase transformation of a phase change material in a rectangular enclosure with corrugated fins is studied. Employing a physics-based model, the influence of fin length, thickness, and wave amplitude on the thermal and fluid flow fields is explored. Incorporating fin
...
The direct simulation Monte Carlo (DSMC) method, which is a probabilistic particle-based gas kinetic simulation approach, is employed in the present work to describe the physics of rarefied gas flow in super nanoporous materials (also known as mesoporous). The simulations are per
...
A numerical framework based on computational fluid dynamics (CFD), using the finite volume method (FVM) and volume of fluid (VOF) technique is presented to investigate the effect of the laser beam intensity profile on melt pool behavior in laser-assisted powder-based directed ene
...
Laser beam shaping offers remarkable possibilities to control and optimise process stability and tailor material properties and structure in laser-based welding and additive manufacturing. However, little is known about the influence of laser beam shaping on the complex melt-pool
...
The gas flow characteristics in lid-driven cavities are influenced by several factors, such as the cavity geometry, gas properties, and boundary conditions. In this study, the physics of heat and gas flow in cylindrical lid-driven cavities with various cross sections, including f
...
Additive manufacturing offers a significant potential for producing metallic parts with distinctly localised microstructures and mechanical properties, commonly known as functional grading. While functional grading is generally accomplished through compositional variations or in-
...
Laser butt welding of thin metal sheets is a widely used fusion-based joining technique in industrial manufacturing. A comprehensive understanding of the complex transport phenomena during the welding process is essential for achieving high-quality welds. In the present work, hig
...
The absorptivity of a material is a major uncertainty in numerical simulations of laser welding and additive manufacturing, and its value is often calibrated through trial-and-error exercises. This adversely affects the capability of numerical simulations when predicting the proc
...
The growing demand for manufactured products with complex geometries requiring advanced fusion-based manufacturing techniques emphasises the importance of process development and optimisation to reduce the risk of adverse outcomes, which is currently impeded with traditional appr
...
Development, optimisation and qualification of welding and additive manufacturing procedures to date have largely been undertaken on an experimental trial and error basis, which imposes significant costs. Numerical simulations are acknowledged as a promising alternative to experi
...
Gas flow and heat transfer in confined geometries at micro-and nanoscales differ considerably from those at macro-scales, mainly due to nonequilibrium effects such as velocity slip and temperature jump. Nonequilibrium effects increase with a decrease in the characteristic length-
...
Molten metal melt pools are characterised by highly non-linear responses, which are very sensitive to imposed boundary conditions. Temporal and spatial variations in the energy flux distribution are often neglected in numerical simulations of melt pool behaviour. Additionally, th
...
Internal flow behaviour and melt-pool surface oscillations during arc welding are complex and not yet fully understood. In the present work, high-fidelity numerical simulations are employed to describe the effects of welding position, sulphur concentration (60-300 ppm) and travel
...
One of the challenges for development, qualification and optimisation of arc welding processes lies in characterising the complex melt-pool behaviour which exhibits highly non-linear responses to variations of process parameters. The present work presents a computational model to
...
High-viscosity liquid mixing in a slug-flow micromixer
A numerical study
Mixing of high-viscosity liquids (e.g. glycerol–water solutions) is challenging and costly and often requires employing active mixing methods. Two-phase flow micromixers have attracted attention due to their low cost, simple structure, and high performance. In the present work, w
...