A rapidly growing population across mountain regions is pressuring expansion onto steeper slopes, leading to increased exposure of people and their assets to slow-moving landslides. These moving hillslopes can inflict damage to buildings and infrastructure, accelerate with urban
...
A rapidly growing population across mountain regions is pressuring expansion onto steeper slopes, leading to increased exposure of people and their assets to slow-moving landslides. These moving hillslopes can inflict damage to buildings and infrastructure, accelerate with urban alterations, and catastrophically fail with climatic and weather extremes. Yet, systematic estimates of slow-moving landslide exposure and their drivers have been elusive. Here, we present a new global database of 7,764 large (A ≥ 0.1 km2) slow-moving landslides across nine IPCC regions. Using high-resolution human settlement footprint data, we identify 563 inhabited landslides. We estimate that 9% of reported slow-moving landslides are inhabited, in a given basin, and have 12% of their areas occupied by human settlements, on average. We find the density of settlements on unstable slopes decreases in basins more affected by slow-moving landslides, but varies across regions with greater flood exposure. Across most regions, urbanization can be a relevant driver of slow-moving landslide exposure, while steepness and flood exposure have regionally varying influences. In East Asia, slow-moving landslide exposure increases with urbanization, gentler slopes, and less flood exposure. Our findings quantify how disparate knowledge creates uncertainty that undermines an assessment of the drivers of slow-moving landslide exposure in mountain regions, facing a future of rising risk, such as Central Asia, Northeast Africa, and the Tibetan Plateau.
@en