AO

Anabel Ovide

4 records found

Application-specific quantum computers offer the most efficient means to tackle problems intractable by classical computers. Realizing these architectures necessitates a deep understanding of quantum circuit properties and their relationship to execution outcomes on quantum devic ...
Current monolithic quantum computer architectures have limited scalability. One promising approach for scaling them up is to use a modular or multi-core architecture, in which different quantum processors (cores) are connected via quantum and classical links. This new architectur ...
Modular quantum computing architectures are a promising alternative to monolithic QPU (Quantum Processing Unit) designs for scaling up quantum devices. They refer to a set of interconnected QPUs or cores consisting of tightly coupled quantum bits that can communicate via quantum- ...
Quantum many-core processors are envisioned as the ultimate solution for the scalability of quantum computers. Based upon Noisy Intermediate-Scale Quantum (NISQ) chips interconnected in a sort of quantum intranet, they enable large algorithms to be executed on current and close f ...