DC
Dídia I. C. Covas
7 records found
1
Intermittent water supply systems are prone to air entrapments during the pipe filling phase. This work aims to analyse and discuss the numerical results obtained by applying the recently developed AirSWMM model, an extension of SWMM incorporating air phase, to a laboratory netwo
...
The paper proposes a novel methodology to locate and quantify entrapped air pockets created during pipe-filling events often found in intermittent water supply systems. Different filling conditions were tested in an experimental pipe with a high point. Measurements were taken and
...
The current research aims to analyse the effect of the number and shape of the blades and the curvature of the flume bottom on the performance curves of undershot water wheels, based on experimental tests conducted in a fully instrumented laboratory facility. Six wheels are teste
...
Stormwater management model (SWMM) software has recently become a modeling tool for the simulation of intermittent water supply systems. However, SWMM is not capable of accurately simulating the air behavior in the pipe-filling phase, missing therefore a relevant factor during pi
...
The current research focuses on the analysis of different dynamic effects of an air pocket located at mid-pipe length on transient pressures based on experimental data. Different flow rates and air pocket volumes are analysed. Several features are identified in the pressure-head
...
Pumps running as turbines are pointed out as a cost-effective solution for energy recovery in pressurised water supply systems. However, these hydraulic machines feature low efficiency under variable discharge operation due to the lack of an inlet flow control component. Variable
...
The aim of this paper is the experimental characterization of a ball valve under steady and unsteady conditions, based on experimental tests carried out in a pressurized pipe system assembled at Instituto Superior Técnico. Data analysis showed that the response of the valve under
...