BK

Bonsung Koo

10 records found

Authored

A methodology that accurately simulates the brittle behavior of epoxy polymers initiating at the molecular level due to bond elongation and subsequent bond dissociation is presented in this paper. The system investigated in this study comprises a combination of crystalline car ...

An atomistic modeling framework to investigate the interface/interphase of composite architecture with carbon fibers containing radially-grown carbon nanotubes (often called fuzzy fibers) is detailed in this paper. A polymeric functional coating for the carbon fiber surface, w ...

The carbon fiber/polymer matrix interphase region plays an important role in the behavior and failure initiation of polymer matrix composites and accurate modeling techniques are needed to study the effects of this complex region on the composite response. This paper presents ...

A multiscale-modeling framework is presented to understand damage and failure response in carbon nanotube reinforced nanocomposites. A damage model is developed using the framework of continuum damage mechanics with a physical damage evolution equation inspired by molecular dynam ...

This article presents a novel approach to model the mechanical response of smart polymeric materials. A cyclobutane-based mechanophore, named "smart particle" in this article, is embedded in an epoxy polymer matrix to form the self-sensing smart material. A spring-bead model i ...

A novel molecular dynamics (MD) simulation methodology to capture brittle fracture in epoxy-based thermoset polymer under mechanical loading is presented. The ductile behavior of amorphous polymers has been captured through traditional MD simulation methods by estimating the s ...

A comprehensive, point-information-to-continuum-level analysis framework is presented in this paper to accurately characterize the behavior of CNT-enhanced composite materials. Molecular dynamics (MD) simulations are performed to study atomistic interactions of the CNT with the p ...
This paper presents the development of a novel methodology for modeling the interphase between carbon fiber and polymer matrix using atomistic scale simulations. The model is integrated within a multiscale framework for the analysis of polymer matrix composites. The interphase re ...
A multiscale methodology that accurately simulates the inelastic behavior of epoxy polymers initiating at the molecular level due to bond elongation and subsequent bond dissociation is presented in this paper. The system investigated in this study comprises a combination of cryst ...
This paper presents a multiscale approach for capturing the mechanical response of smart polymer materials. A spring-bead model is developed at the microscale based on results from molecular dynamics simulation to represent a bond cluster of polymer. Through parametric studies an ...