NB

N.J. Bakker

9 records found

Nonequal current generation in the cells of a photovoltaic module, e.g., due to partial shading, leads to operation in reverse bias. This quickly causes a significant efficiency loss in perovskite solar cells. We report a more quantitative investigation of the reverse bias degrad ...
Partial shading of CIGS modules can lead to permanent damage of the module in the shaded area. This is caused by harmful reverse bias voltages in the shaded area which lead to reverse bias induced defects, also known as wormlike defects. A lot is already known about the origin an ...
Partial shading of PV modules can lead to degradation of the shaded cells. The degradation originates from a reverse bias voltage over the shaded cells. In order to mitigate reverse bias damage in Cu(In, Ga)Se2 (CIGS) modules, a good understanding of the fundamental mechanisms go ...
Partial shading of monolithically interconnected Cu(In,Ga)Se2 (CIGSe) modules can lead to the formation of reverse bias induced defects. These localized defects permanently reduce the output of the PV module. The formation and propagation mechanisms of these defects is ...
When a PV module is partially shaded, the shaded solar cells operate in a reverse bias condition. For Cu(In,Ga)Se2 cells this condition can cause defects that irreversibly reduce the output of these cells and the full module. In order to design robust shade-tolerant CIGS modules ...
Partial shading of Cu(In,Ga)(Se,S)2 (CIGS) photovoltaic (PV) modules is getting more attention, as is witnessed by the increase in publications on this topic in recent years. This review will give an overview of shading tests executed on CIGS modules and focuses on the more funda ...
Partial shading of Cu(In,Ga)Se2 modules can lead to the formation of reverse bias induced wormlike defects. These wormlike defects act as local shunts and permanently decrease module output. A good understanding of the formation and propagation mechanisms of these defe ...
The perovskite solar cell is considered a promising candidate as the top cell for high-efficiency tandem devices with crystalline silicon (c-Si) bottom cells, contributing to the cost reduction of photovoltaic energy. In this contribution, a simulation method, involving optical a ...