FZ

9 records found

Authored

In hydrocarbon drilling, mud filtrate penetrates permeable formations and alters the pore fluid characteristics in the immediate vicinity of the borehole. Typically, the prevailing in situ pore fluids are displaced by the invading mud filtrate, which leads to gradually changin ...

Ground-penetrating radar (GPR), usually working in the frequency from tens of megahertz to several gigahertz, is widely applied in mapping near-surface applications. In recent decades, GPR is frequently utilized for fluid-related applications, such as groundwater assessment, cont ...
In oil drilling, mud filtrate penetrates into porous formations and alters the compositions and properties of the pore fluids. This disturbs the logging signals and brings errors to reservoir evaluation. Drilling and logging engineers therefore deem mud invasion as undesired and ...
In the phase of oil drilling, mud filtrate penetrates into porous formations and alters the pore fluid properties. This complicates well logging exploration, and inevitably gives rise to shift in reservoir estimation. Logging engineers deem mud invasion a harm and attempt to elim ...

Reservoir monitoring using borehole radars to improve oil recovery

Suggestions from 3D electromagnetic and fluid modeling

The recently developed smart well technology allows for sectionalized production control by means of downhole inflow control valves and monitoring devices. We consider borehole radars as permanently installed downhole sensors to monitor fluid evolution in reservoirs, and it pr ...

During drilling, the mud column sustains a slightly higher pressure than the formation to maintain the stability of the well wall, which causes the mud filtrate to penetrate into formation pores and displace in-situ fluids. The invasion depth is affected by reservoir properties, ...