SC

S.A. Caro Ortiz

7 records found

The separation of C8 aromatic hydrocarbons (e.g. xylenes) is one of the most important processes in the petrochemical industry. Current research efforts are focused on materials that can decrease the energy consumption and increase the efficiency of the separation process. Indust ...
The separation of xylenes is one of the most important processes in the petrochemical industry. In this article, the competitive adsorption from a fluid-phase mixture of xylenes in zeolites is studied. Adsorption from both vapor and liquid phases is considered. Computations of ad ...
We systematically study how the degree of framework flexibility affects the adsorption and diffusion of aromatics in MFI-type zeolites as computed by Monte Carlo simulations. It is observed that as the framework is more flexible, the zeolite structure is inherently changed. We ha ...

Brick-CFCMC

Open Source Software for Monte Carlo Simulations of Phase and Reaction Equilibria Using the Continuous Fractional Component Method

We present a new molecular simulation code, Brick-CFCMC, for performing Monte Carlo simulations using state-of-the-art simulation techniques. The Continuous Fractional Component (CFC) method is implemented for simulations in the NVT/NPT ensembles, the Gibbs Ensemble, the Grand-Ca ...

Corrigendum to “Molecular simulation of the vapor-liquid equilibria of xylene mixtures

Force field performance, and Wolf vs. Ewald for electrostatic Interactions” (Fluid Phase Equilibria (2019) 485 (239–247), (S037838121830503X), (10.1016/j.fluid.2018.12.006))

Vapor-liquid equilibria of xylenes were computed using Monte Carlo simulations in the Gibbs ensemble. For binary mixtures, the predicted composition of the liquid phase is in agreement with experiments. The computed vapor phase densities of each isomer showed an effect on the pre ...

Adsorption of Aromatics in MFI-Type Zeolites

Experiments and Framework Flexibility in Monte Carlo Simulations

Computer simulations of adsorption of aromatics in zeolites are typically performed using rigid zeolite frameworks. However, adsorption isotherms for aromatics are very sensitive to small differences in the atomic positions of the zeolite (Chem. Phys. Lett., 1999, 308, 155-159). ...

Molecular simulation of the vapor-liquid equilibria of xylene mixtures

Force field performance, and Wolf vs. Ewald for electrostatic interactions

This article explores how well vapor-liquid equilibria of pure components and binary mixtures of xylenes can be predicted using different force fields in molecular simulations. The accuracy of the Wolf method and the Ewald summation is evaluated. Monte Carlo simulations in the Gi ...