Gv
G.C. van Rhoon
21 records found
1
Magnetic resonance thermometry (MRT) can measure in-vivo 3D-temperature changes in real-time and noninvasively. However, for the oropharynx region and the entire head and neck, motion potentially introduces large artifacts. Considering long treatment times of 60–90 min, this stud
...
Hyperthermia treatment consists of elevating the temperature of the tumor to increase the effectiveness of radiotherapy and chemotherapy. Hyperthermia treatment planning (HTP) is an important tool to optimize treatment quality using pre-treatment temperature predictions. The accu
...
Multifunctional, biocompatible magnetic materials, such as iron oxide nanoparticles (IONPs), hold great potential for biomedical applications including diagnostics (e.g., MRI) and cancer therapy. In particular, they can play a crucial role in advancing cancer thermotherapy by gen
...
While hyperthermia has been shown to induce a variety of cytotoxic and sensitizing effects on cancer tissues, the thermal dose–effect relationship is still not well quantified, and it is still unclear how it can be optimally combined with other treatment modalities. Additionally,
...
Purpose: This study aimed to assess the quality of the lucite cone applicator (LCA), the standard applicator for superficial hyperthermia at the Erasmus MC Cancer Institute, using the most recent quality assurance guidelines, thus verifying their feasibility. Materials and method
...
Multi-echo gradient echo pulse sequences
Which is best for PRFS MR thermometry guided hyperthermia?
Purpose: MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT
...
Purpose: We studied the differences between planning and treatment position, their impact on the accuracy of hyperthermia treatment planning (HTP) predictions, and the relevance of including true treatment anatomy and position in HTP based on magnetic resonance (MR) images. Mater
...
Avoiding Pitfalls in Thermal Dose Effect Relationship Studies
A Review and Guide Forward
The challenge to explain the diffuse and unconclusive message reported by hyperthermia studies investigating the thermal dose parameter is still to be unravelled. In the present review, we investigated a wide range of technical and clinical parameters characterising hyperthermia
...
Objective: The addition of hyperthermia in the treatment of intact breast cancer with the aim to improve local response is currently in a research phase. First, optimal hyperthermia devices need to be developed, for which a diverse, anatomically and pathologically accurate set of
...
Heterostructured magnetic nanoparticles show great potential for numerous applications in biomedicine due to their ability to express multiple functionalities in a single structure. Magnetic properties are generally determined by the morphological characteristics of nanoparticles
...
Simultaneous ThermoBrachytherapy
Electromagnetic Simulation Methods for Fast and Accurate Adaptive Treatment Planning
The combination of interstitial hyperthermia treatment (IHT) with high dose rate brachytherapy (HDR‐BT) can improve clinical outcomes since it highly enhances the efficiency of cell kill, especially when applied simultaneously. Therefore, we have developed the ThermoBrachy applic
...
In high-dose-rate brachytherapy (HDR-BT) for prostate cancer treatment, interstitial hyperthermia (IHT) is applied to sensitize the tumor to the radiation (RT) dose, aiming at a more efficient treatment. Simultaneous application of HDR-BT and IHT is anticipated to provide maximum
...
Background: During resonance frequency (RF) hyperthermia treatment, the temperature of the tumor tissue is elevated to the range of 39–44°C. Accurate temperature monitoring is essential to guide treatments and ensure precise heat delivery and treatment quality. Magnetic resonance
...
Biological modeling in thermoradiotherapy
Present status and ongoing developments toward routine clinical use
Biological modeling for anti-cancer treatments using mathematical models can be very supportive in gaining more insight into dynamic processes responsible for cellular response to treatment, and predicting, evaluating and optimizing therapeutic effects of treatment. This review p
...
Background: Treatment of early-stage breast cancer currently includes surgical removal of the tumor and (partial) breast irradiation of the tumor site performed at fractionated dose. Although highly effective, this treatment is exhaustive for both patient and clinic. In this stud
...
The evaluation of the biological effects of therapeutic hyperthermia in oncology and the precise quantification of thermal dose, when heating is coupled with radiotherapy or chemotherapy, are active fields of research. The reliable measurement of hyperthermia effects on cells and
...
Dual-function MR-guided hyperthermia
An innovative integrated approach and experimental demonstration of proof of principle
Temperature monitoring plays a central role in improving clinical effectiveness of adjuvant hyperthermia. The potential of magnetic resonance thermometry for treatment monitoring purposes led to several MR-guided hyperthermia approaches. However, the proposed solutions were sub-o
...
The efficacy of a hyperthermia treatment depends on the delivery of well-controlled heating; hence, accurate temperature monitoring is essential for ensuring effective treatment. For deep pelvic hyperthermia, there are no comprehensive and systematic reports on MR thermometry. Mo
...
Hyperthermia treatments in the clinic rely on accurate temperature measurements to guide treatments and evaluate clinical outcome. Currently, magnetic resonance thermometry (MRT) is the only clinical option to non-invasively measure 3D temperature distributions. In this review, w
...
In hyperthermia, the general opinion is that pre-treatment optimization of treatment settings requires a patient-specific model. For deep pelvic hyperthermia treatment planning (HTP), tissue models comprising four tissue categories are currently discriminated. For head and neck H
...