Switched capacitor multilevel inverter topologies are attractive among industrial power electronics researchers due to their applicability in sustainable energy systems such as renewable energy source (RES) applications. In this paper, a new switched capacitor (SC)-based grid-tie
...
Switched capacitor multilevel inverter topologies are attractive among industrial power electronics researchers due to their applicability in sustainable energy systems such as renewable energy source (RES) applications. In this paper, a new switched capacitor (SC)-based grid-tied seven-level inverter is proposed for renewable energy sources (RES) applications. The proposed inverter can generate a seven-level output voltage waveform with voltage boosting ability and a gain factor of 3. Also, the proposed topology can provide the self voltage balancing for capacitors. The most important challenge of the SC-based topologies, i.e., the capacitor charging spike current, is solved by applying a soft charging circuit in the charging loop of the capacitors. The soft charging circuit consists of an inductor and a power diode in the capacitor charging path. Using a small size inductor in the soft charging circuit, the proposed inverter can limit the input current spikes. Comprehensive experiment results and comparisons are presented to verify the accurate performance of the proposed inverter.@en