Power-Efficient Accelerated Genomic Short Read Mapping on Heterogeneous Computing Platforms

More Info
expand_more

Abstract

We propose a novel FPGA-accelerated BWA-MEM implementation, a popular tool for genomic data mapping. The performance and power-efficiency of the FPGA implementation on the single Xilinx Virtex-7 Alpha Data add-in card is compared
against a software-only baseline system. By offloading the Seed Extension phase onto the FPGA, a two-fold speedup in overall application-level performance is achieved and a 1.6x gain in power-efficiency. To facilitate platform and tool-agnostic comparisons, the base pairs per Joule unit is introduced as a measure of power-efficiency. The FPGA design is able to map up to 34 thousand base pairs per Joule.