A Strain-Based Health Indicator for the SHM of Skin-to-Stringer Disbond Growth of Composite Stiffened Panels in Fatigue
More Info
expand_more
Abstract
Real-time Structural Health Monitoring (SHM) of aeronautical structural components is a technology persistently investigated the last years by researchers and engineers to potentially reduce the cost and/or implementation of scheduled maintenance tasks. To this end, various types of sensors have been proposed to serve this role, e.g. piezoelectric, acoustic emission, and strain sensors. In the present paper, a strain-based SHM methodology is proposed for skin/stringer disbond propagation health monitoring. Fiber-optic strain sensors with engraved Bragg gratings are utilized in order to evaluate the propagation of artificially-induced disbonds at single-stringered composite panels. The specimens are subjected to a block loading compression-compression fatigue spectrum. Longitudinal static strains are periodically acquired during quasi-static loadings every 500 cycles. A Health Indicator (HI), based on strains received from the stringer’s feet, is proposed and utilized to monitor the disbond growth. The evolution of this indicator is experimentally monitored throughout the lifespan of the specimens. The present paper verifies and consolidates via actual fatigue experiments the potential of the proposed static-strain based HI developed from numerical data in our previous work.