Buckled MEMS beams for energy harvesting from low frequency vibrations
More Info
expand_more
Abstract
Vibration energy harvesters based on the resonance of the beam structure work effectively only when the operating frequency window of the beam resonance matches with the available vibration source. None of the resonating MEMS structures can operate with low frequency, low amplitude, and unpredictable ambient vibrations since the resonant frequency goes up very high as the structure gets smaller. Bistable buckled beamenergy harvester is therefore developed for lowering the operating frequency window below 100Hz for the first time at the MEMS scale.This design does not rely on the resonance of the MEMS structure but operates with the large snapping motion of the beam at very low frequencies when input energy overcomes an energy threshold. A fully functional piezoelectric MEMS energy harvester is designed, monolithically fabricated, and tested. An electromechanical lumped parameter model is developed to analyze the nonlinear dynamics and to guide the design of the nonlinear oscillator based energy harvester.Multilayer beamstructurewith residual stress induced buckling is achieved through the progressive residual stress control of the deposition processes along the fabrication steps. Surface profile of the released device shows bistable buckling of 200μm which matches well with the amount of buckling designed. Dynamic testing demonstrates the energy harvester operates with 50% bandwidth under 70Hz at 0.5g input, operating conditions that have not been demonstrated byMEMS vibration energy harvesters before.