Nonlinear coarse-graining models for 3D printed multi-material biomimetic composites
More Info
expand_more
Abstract
Bio-inspired composites are a great promise for mimicking the extraordinary and highly efficient properties of natural materials. Recent developments in voxel-by-voxel 3D printing have enabled extreme levels of control over the material deposition, yielding complex micro-architected materials. However, design complexity, very large degrees of freedom, and limited computational resources make it a formidable challenge to find the optimal distribution of both hard and soft phases. To address this, a nonlinear coarse-graining approach is developed, where foam-based constitutive equations are used to predict the elastoplastic mechanical behavior of biomimetic composites. The proposed approach is validated by comparing coarse-grained finite element predictions against full-field strain distributions measured using digital image correlation. To evaluate the degree of coarse-graining on model accuracy, pre-notched specimens decorated with a binarized version of a renowned painting were modeled. Subsequently, coarse-graining is used to predict the fracture behavior of bio-inspired composites incorporating complex designs, such as functional gradients and hierarchical organizations. Finally, as a showcase of the proposed approach, the inverse coarse-graining is combined with a theoretical model of bone tissue adaptation to optimize the microarchitecture of a 3D-printed femur. The predicted properties were in exceptionally good agreement with the corresponding experimental results. Therefore, the coarse-graining method allows the design of advanced architected materials with tunable and predictable properties.