Simulation-based validation of the physical model in 3D polarized light imaging
More Info
expand_more
Abstract
3D Polarized Light Imaging is a neuroimaging technique that provides a high-resolution reconstruction of nerve fiber pathways in human postmortem brains. The spatial fiber orientations are derived from birefringence measurements of histological brain sections which are interpreted by a macroscopic model of uniaxial birefringence. In order to validate the macroscopic model and to investigate possible limitations, numerical simulations have been used. Simulations of a fiber bundle with different inclination angles and optical resolutions have shown that the macroscopic model ensures a reliable estimation of the fiber orientations as long as the polarimeter does not resolve structures smaller than the fiber radius.
No files available
Metadata only record. There are no files for this conference paper.