Advanced Measurement Techniques and Circuits for Array-Based Transit-Time Ultrasonic Flow Meters

More Info
expand_more

Abstract

This thesis describes the design, prototyping and evaluation of matrix-based clamp-on ultrasonic flow meters. Several new measurement techniques are presented as well as an Application-Specific Integrated Circuit (ASIC) designed for accurate measurement of flow velocity with matrix transducers.

The influence of circuit topologies on the zero-flow performance of ultrasonic flow meters has been analyzed and an algorithm is presented to reduce the offset. With a linear transducer array, flow measurements have been performed via two different acoustic paths, demonstrating the ability to accurately measure flow with array transducers through a stainless-steel pipe wall. In order to improve signal quality, an ASIC has been designed that is able to drive and read-out 96 piezo transducer elements. The ASIC has been characterized electrically and flow measurements have been performed in combination with the linear transducer arrays.

Several new techniques, enabled using transducer arrays, have also been explored. By tapering the amplitude of the transmit signals, spurious waves can be suppressed. An auto-calibration technique has been developed that uses additional acoustic measurements to estimate the diameter of the pipe and the speed of sound in the pipe wall and liquid. Finally, a simulation study has been performed to explore the possibility of exploiting the beam-steering capabilities of transducer arrays to measure flow velocity profiles by using measurements obtained via multiple acoustic paths.

Files