Three-dimensional relative localization and synchronized movement with wireless ranging

More Info
expand_more

Abstract

Relative localization is a key capability for autonomous robot swarms, and it is a substantial challenge, especially for small flying robots, as they are extremely restricted in terms of sensors and processing while other robots may be located anywhere around them in three-dimensional space. In this article, we generalize wireless ranging-based relative localization to three dimensions. In particular, we show that robots can localize others in three dimensions by ranging to each other and only exchanging body velocities and yaw rates. We perform a nonlinear observability analysis, investigating the observability of relative locations for different cases. Furthermore, we show both in simulation and with real-world experiments that the proposed method can be used for successfully achieving various swarm behaviours. In order to demonstrate the method’s generality, we demonstrate it both on tiny quadrotors and lightweight flapping wing robots.

Files

S11721_022_00221_0.pdf
(pdf | 6.16 Mb)
- Embargo expired in 01-07-2023
Unknown license