Proposal and proof-of-principle demonstration of fast-switching broadband frequency shifting for a frequency-multiplexed quantum repeater

More Info
expand_more

Abstract

A proposal for fast-switching broadband frequency-shifting technology making use of frequency conversion in a nonlinear crystal is set forth, whereby the shifting is imparted to the converted photons by creating a bank of frequency-displaced pump modes that can be selected by a photonic switch and directed to the nonlinear crystal. Proof-of-principle results show that the expected frequency-shifting operation can be achieved. Even though the dimensions of the currently employed crystal and significant excess loss in the experimental setup prevented conversion of single-photon-level inputs, thorough experimental and theoretical analysis of the noise contribution allowed for estimation of the system performance in an optimized scenario, where the expected signal-to-noise ratio (SNR) for single-photon conversion and frequency shifting can reach up to 25 dB with proper narrowband filtering and state-of-the-art devices. The proposed frequency-shifting solution figures as a promising candidate for applications in frequency-multiplexed quantum repeater architectures with 25 dB output SNR (with 20% conversion efficiency) and capacity for 16 channels spread around a 100 GHz spectral region.

Files

FreqShift_Accepted.pdf
(pdf | 5.41 Mb)
- Embargo expired in 10-03-2022
Unknown license
Josab_38_4_1140.pdf
(pdf | 4.19 Mb)
Unknown license

Download not available