Unsteady Non-linear Control Surface Modelling for Aeroservoelastic Applications

More Info
expand_more

Abstract

In this paper, we present a data-driven method to model the unsteady non-linear response of aircraft control surfaces. This method relies on aerodynamic reduced-order models (ROM) derived from computational fluid dynamics with Reynolds averaged Navier-Stokes (CFD-RANS) analysis in the transonic domain. The ROM consists of a combination of look-up tables and transfer functions, with which we can capture the incremental unsteady loads from aileron and spoiler large deflections. The ROM can replicate transient CFD results with a 5% margin of error in most scenarios using a realistic 3D wing model. We also investigate a hybrid approach to calculate aeroelastic wing deformations. To do so, we simulate the control loads with our the aforementioned ROM, while we rely on a fast but robust low-fidelity method to model the wing aeroelastic response. We compared this method against high-fidelity analysis and estimated an average error of 5% to 10% in most of the cases with a three orders of magnitude decrease in simulation time. The rapidity of such load estimation technique makes it suitable for wing sizing and flight control optimisation problems.

Files

License info not available