A two-layer control architecture for operational management and hydroelectricity production maximization in inland waterways using model predictive control
More Info
expand_more
Abstract
This work presents the design of a combined control and state estimation approach to simultaneously maintain optimal water levels and maximize hydroelectricity generation in inland waterways using gates and ON/OFF pumps. The latter objective can be achieved by installing turbines within canal locks, which harness the energy generated during lock filling and draining operations. Hence, the two objectives are antagonistic in nature, as energy generation maximization results from optimizing the number of lock operations, which in turn causes unbalanced upstream and downstream water levels. To overcome this problem, a two-layer control architecture is proposed. The upper layer receives external information regarding the current tidal period, and determines control actions that maintain optimal navigation conditions and maximize energy production using model predictive control (MPC) and moving horizon estimation (MHE). This information is provided to the lower layer, in which a scheduling problem is solved to determine the activation instants of the pumps that minimize the error with respect to the optimal pumping references. The strategy is applied to a realistic case study, using a section of the inland waterways in northern France, which allows to showcase its efficacy.