Fault detection and diagnosis to enhance safety in digitalized process system

More Info
expand_more

Abstract

The increased complexity of digitalized process systems requires advanced tools to detect and diagnose faults early to maintain safe operations. This study proposed a hybrid model that consists of Kernel Principal Component Analysis (kPCA) and DNNs that can be applied to detect and diagnose faults in various processes. The complex data is processed by kPCA to reduce its dimensionality; then, simplified data is used for two separate DNNs for training (detection and diagnosis). The relative performance of the hybrid model is compared with conventional methods. Tennessee Eastman Process was used to confirm the efficacy of the model. The results show the reduction of input dimensionality increases classification accuracy. In addition, splitting detection and diagnosis into two DNNs results in reduced training times and increased classification accuracy. The proposed hybrid model serves as an important tool to detect the fault and take early corrective actions, thus enhancing process safety.

Files

1_s2.0_S0098135421003872_main.... (pdf)
(pdf | 1.63 Mb)
- Embargo expired in 22-05-2022
Unknown license