Enhanced symbolic regression through local variable transformations
More Info
expand_more
expand_more
Abstract
Genetic programming (GP) is a technique widely used in a range of symbolic regression problems, in particular when there is no prior knowledge about the symbolic function sought. In this paper, we present a GP extension introducing a new concept of local transformed variables, based on a locally applied affine transformation of the original variables. This approach facilitates finding accurate parsimonious models. We have evaluated the proposed extension in the context of the Single Node Genetic Programming (SNGP) algorithm on synthetic as well as real-problem datasets. The results confirm our hypothesis that the transformed variables significantly improve the performance of the standard SNGP algorithm.
Files
IJCCI_2017_36.pdf
(pdf | 0.635 Mb)
Unknown license
Download not available