A multi-type calculus for inquisitive logic
More Info
expand_more
Abstract
In this paper, we define a multi-type calculus for inquisitive logic, which is sound, complete and enjoys Belnap-style cut-elimination and subformula property. Inquisitive logic is the logic of inquisitive semantics, a semantic framework developed by Groenendijk, Roelofsen and Ciardelli which captures both assertions and questions in natural language. Inquisitive logic adopts the so-called support semantics (also known as team semantics). The Hilbert-style presentation of inquisitive logic is not closed under uniform substitution, and some axioms are sound only for a certain subclass of formulas, called flat formulas. This and other features make the quest for analytic calculi for this logic not straightforward. We develop a certain algebraic and order-theoretic analysis of the team semantics, which provides the guidelines for the design of a multi-type environment accounting for two domains of interpretation, for flat and for general formulas, as well as for their interaction. This multi-type environment in its turn provides the semantic environment for the multi-type calculus for inquisitive logic we introduce in this paper.