Constructions and Noise Threshold of Hyperbolic Surface Codes
More Info
expand_more
expand_more
Abstract
We show how to obtain concrete constructions of homological quantum codes based on tilings of 2-D surfaces with constant negative curvature (hyperbolic surfaces). This construction results in 2-D quantum codes whose tradeoff of encoding rate versus protection is more favorable than for the surface code. These surface codes would require variable length connections between qubits, as determined by the hyperbolic geometry. We provide numerical estimates of the value of the noise threshold and logical error probability of these codes against independent X or Z noise, assuming noise-free error correction.