Cardiac tissue conductivity estimation using confirmatory factor analysis
More Info
expand_more
Abstract
Impaired electrical conduction has been shown to play an important role in the development of heart rhythm disorders. Being able to determine the conductivity is important to localize the arrhythmogenic substrate that causes abnormalities in atrial tissue. In this work, we present an algorithm to estimate the conductivity from epicardial electrograms (EGMs) using a high-resolution electrode array. With these arrays, it is possible to measure the propagation of the extracellular potential of the cardiac tissue at multiple positions simultaneously. Given this data, it is in principle possible to estimate the tissue conductivity. However, this is an ill-posed problem due to the large number of unknown parameters in the electrophysiological data model. In this paper, we make use of an effective method called confirmatory factor analysis (CFA), which we apply to the cross correlation matrix of the data to estimate the tissue conductivity. CFA comes with identifiability conditions that need to be satisfied to solve the problem, which is, in this case, estimation of the tissue conductivity. These identifiability conditions can be used to find the relationship between the desired resolution and the required amount of data. Numerical experiments on the simulated data demonstrate that the proposed method can localize the conduction blocks in the tissue and can also estimate the smoother variation in the conductivities. The conductivity values estimated from the clinical data are in line with the values reported in literature and the EGMs reconstructed based on the estimated parameters match well with the clinical EGMs.