The performance of a weir-mounted tidal turbine
An experimental investigation
More Info
expand_more
Abstract
The tidal flow between bridge pillars and through open barriers is a promising source of ocean energy which can be exploited using tidal stream turbines, as proven recently by operational demonstration plants. The aim of this study is to clarify the consequences for the power output of tidal turbines when placing them in a hydraulic structure. To this end, experimental measurements of turbine power and wakes are performed, using a down-scaled turbine mounted at a submerged weir. The results are compared to an analytical model, validating its range of application for optimising turbine-weir geometries. The experimental data show that the power coefficient of the turbine can be increased by optimising the blockage of the channel and the distance between the turbine and the structure, which is related to the wake configuration. In this way, the power coefficient increased by 40% when the turbine was re-positioned from the upstream to the downstream end of the structure. The theoretical model could reproduce the measured power within 10% accuracy, proving its value as a rapid assessment tool. As such, this work advances the knowledge needed to meet targets on the transition towards renewable energy.