Fleet scheduling for electric towing of aircraft under limited airport energy capacity

More Info
expand_more

Abstract

Taxiing aircraft using electric vehicles is seen as an effective solution to meet aviation targets of climate neutrality. However, making the transition to electric taxiing operations is expected to significantly increase the electricity demand at airports. In this paper we propose a mixed-integer linear program to schedule electric vehicles for aircraft towing and battery charging, while considering a limit for the supply of energy. The objective of the schedule is to maximize emissions savings. For computational tractability, we develop an Adaptive Large Neighbourhood Search which makes use of multiple local search heuristics to identify scheduling solutions. For daily scheduling with a small fleet size, the developed heuristic achieves solutions with an average 4% gap to the best linear programming solution. The results show that charging the vehicles during daytime is essential to maximize saved emissions: removing charging opportunities for a few hours during the day reduces the performance by an average of 6.4%. In addition, it is found that fast charging leads to low vehicle downtime, unless the battery size exceeds 750kWh, when charging rates over 150kW become unnecessary. Overall, our model provides support for infrastructure planning of airports during the transition to aircraft electric taxiing.