Derivative Target Line (DTL) for Continuous Human Activity Detection and Recognition
More Info
expand_more
Abstract
In this paper, we investigate the classification of Activities of Daily Living (ADL) by using a pulsed ultra-wideband radar. Specifically, we focus on contiguous activities that can be inseparable in time and share a common transition, such as walking and falling. The range-time data domain is deliberately exploited to determine transitions from translation activities to in-place activities and vice versa, using a simple, yet effective approach based on the proposed Derivative Target Line (DTL). The separation of different in-place activities is then addressed using an energy detector finding the onset and offset times. Furthermore, the possible ADL for classification are limited at any decision stage based on kinematic constraints of human movements. We show that such limitation of classes at any given time leads to a classification improvement over a classifier containing always all ADL classes.