Anomaly-Based DNN Model for Intrusion Detection in IoT and Model Explanation

Explainable Artificial Intelligence

More Info
expand_more

Abstract

IoT has gained immense popularity recently with advancements in technologies and big data. IoT network is dynamically increasing with the addition of devices, and the big data is generated within the network, making the network vulnerable to attacks. Thus, network security is essential, and an intrusion detection system is needed. In this paper, we proposed a deep learning-based model for detecting intrusions or attacks in IoT networks. We constructed a DNN model, applied a filter method for feature reduction, and tuned the model with different parameters. We also compared the performance of DNN with other machine learning techniques in terms of accuracy, and the proposed DNN model with weight decay of 0.0001 and dropout rate of 0.01 achieved an accuracy of 0.993, and the reduced loss on the NSL-KDD dataset having five classes. DL models are a black box and hard to understand, so we explained the model predictions using LIME.

Files

978_981_19_6661_3_28.pdf
(pdf | 0.53 Mb)
- Embargo expired in 28-07-2023
Unknown license