Quantifying the completeness of goals in BDI agent systems

More Info
expand_more

Abstract

Given the current set of intentions an autonomous agent may have, intention selection is the agent's decision which intention it should focus on next. Often, in the presence of conflicts, the agent has to choose between multiple intentions. One factor that may play a role in this deliberation is the level of completeness of the intentions. To that end, this paper provides pragmatic but principled mechanisms for quantifying the level of completeness of goals in a BDI-style agent. Our approach leverages previous work on resource and effects summarization but we go beyond by accommodating both dynamic resource summaries and goal effects, while also allowing a non-binary quantification of goal completeness. We demonstrate the computational approach on an autonomous robot case study.

No files available

Metadata only record. There are no files for this conference paper.