Using a space filling curve approach for the management of dynamic point clouds

More Info
expand_more

Abstract

Point cloud usage has increased over the years. The development of low-cost sensors makes it now possible to acquire frequent point cloud measurements on a short time period (day, hour, second). Based on the requirements coming from the coastal monitoring domain, we have developed, implemented and benchmarked a spatio-temporal point cloud data management solution. For this reason, we make use of the flat model approach (one point per row) in an Index Organised Table within a RDBMS and an improved spatio-temporal organisation using a Space Filling Curve approach. Two variants coming from two extremes of the space - time continuum are also taken into account, along with two treatments of the z dimension: as attribute or as part of the space filling curve. Through executing a benchmark we elaborate on the performance -loading and querying time-, and storage required by those different approaches. Finally,
we validate the correctness and suitability of our method, through an out-of-the-box way of managing dynamic point clouds.