A 0.91mW/Element Pitch-Matched Front-End ASIC with Integrated Subarray Beamforming ADC for Miniature 3D Ultrasound Probes

More Info
expand_more

Abstract

Data acquisition from 2D transducer arrays is one of the main challenges for the development of emerging miniature 3D ultrasound imaging devices, such as 3D trans-esophageal (TEE) and intra-cardiac echocardiography (ICE) probes (Fig. 10.5.1). The main obstacle lies in the mismatch between the large number of transducer elements (103 to 104) and the limited cable count (<;200). Recent advances in transducer-on-CMOS integration have enabled the use of in-probe subarray beamforming based on delay-and-sum (DAS) circuits [1] to reduce the channel count by an order of magnitude. Further reduction calls for in-probe digitization to enable more advanced data processing and compression in the digital domain. However, prior designs [2-4] compromise on transducer pitch (> half wavelength) to accommodate the ADC and consume >9mW/element, which translates into unacceptable self-heating in miniature 3D probes.

Files

08310246.pdf
(pdf | 0.773 Mb)
Unknown license

Download not available