GPU-Accelerated GATK HaplotypeCaller with Load-Balanced Multi-Process Optimization
More Info
expand_more
Abstract
Due to its high-throughput and low cost, Next Generation Sequencing (NGS) technology is becoming increasingly popular in many genomics research labs. However, handling the massive raw data generated by the NGS platforms poses a significant computational challenge to genomics analysis tools. This paper presents a GPU acceleration of the GATK HaplotypeCaller (GATK HC), a widely used DNA variant caller in the clinic. Moreover, this paper proposes a load-balanced multi-process optimization of GATK HaplotypeCaller to address its implementation limitation which forces the sequential execution of the program and prevents effective utilization of hardware acceleration. In single-threaded mode, the GPU-based GATK HC is 1.71x and 1.21x faster than the baseline HC implementation and the vectorized GATK HC implementation, respectively. Moreover, the GPU-based implementation achieves up to 2.04x and 1.40x speedup in load-balanced multi-process mode over the baseline implementation and the vectorized GATK HC implementation in non-load-balanced multi-process mode, respectively.
Files
Download not available