Semantic Deep Mapping in the Amsterdam Time Machine

Viewing Late 19th- and Early 20th-Century Theatre and Cinema Culture Through the Lens of Language Use and Socio-Economic Status

More Info
expand_more

Abstract

In this paper, we present our work on semantic deep mapping at scale by combining information from various sources and disciplines to study historical Amsterdam. We model our data according to semantic web standards and ground them in space and time such that we can investigate what happened at a particular time and place from a linguistics, socio-economic and urban historical perspective. In a small use case we test the spatio-temporal infrastructure for research on entertainment culture in Amsterdam around the turn of the 20th century. We explain the bottlenecks we encountered for integrating information from different disciplines and sources and how we resolved or worked around them. Finally, we present a set of recommendations and best practices for adapting semantic deep mapping to other settings.