Investigation of the closed porosity of functional ceramic materials by spin-echo small-angle neutron scattering

More Info
expand_more

Abstract

The closed porous structure in ceramic materials is investigated by spin-echo small-angle neutron scattering. A series of ceramic samples of oxygen–ion conductors based on bismuth molybdate with the general formula Bi12.8X0.2Mo5O34 ± δ (X = Mg, Ba, Ca, Sr) is obtained by powder sintering for 6−45 h at a temperature close to the melting point. The samples are characterized by scanning electron microscopy and X-ray fluorescence analysis. It is found that they had a stoichiometric chemical composition, are singlephase, and contain clean pores between crystal grains. The pore size is determined by spin-echo small-angle neutron scattering and ranges from 2.2 to 3.5 μm. It is demonstrated that longer sintering times correspond to larger pores (the increase in their average diameter is as large as 30%). It is found that the studied materials lack a fractal pore structure.

Files

Pavlov2017_Article_Investigati... (pdf)
(pdf | 1.77 Mb)
Unknown license

Download not available